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Further Results on Polynomial
Characterizations of ( ', G)-Invariant and
Reachability Subspaces

PRAMOD P. KHARGONEKAR anxp EROL EMRE. MEMBER. 1EEE

Abstract —This paper is concerned with further deselopment of the
unification between polynomial matrix and geometric theories of linear
ssstems following the work of Emre and Hautus. Equivalence between
different polynomial characterizations of ( F. ¢ )-invariant and reachability
subspaces is shown evplicitly. Several new results are given which clarify
the refations between the polynomial system matrin, invariant subspaces.,
and system zeros. Finally, a polynomial characterization of and a construc-
tive procedure to obtain the largest stabilizability subspace in ker// are
given.

I. INTRODUCTION

N recent vears two of the main approaches to algebraic

linear control theory for finite dimensional linear sys-
tems defined over fields are the “polynomial matrix ap-
proach™ (see Rosenbrock [21]. Wolovich [24]. and the
references therein) and the ‘‘geometric approach™ (see
Wonham [25] and the references given there). Solutions
which are apparently unrelated have been given to several
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Emre. June 1979
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control problems with both approaches. The main funda-
mental concepts for the “geometric™ theory are (F.G)-
invariant and reachability subspaces (see Basile and Marro
(2] and Wonham [25]). whereas for the = polyvnomial matrix
approach™ the main fundamental concepts are the matrix
fraction representations and the associated system matrices
(see Rosenbrock [21} and Wolovich [24]).

A systematic unification of these apparently disjointed
approaches is necessary for a unified study and a better
understanding of these problems as well as for possible
extensions of these results to more general classes of sys-
tems. Although previously several authors have established
some equivalences between these two approaches for several
purposes (see Emre [3]. [$]. Fuhrmann [7]. [8]. Moore and
Silverman [19], Morse {20]. and the references therein). the
first systematic approach towards a unification has started
with Emre and Hautus [6]. where polvnomial characteriza-
tions of (F,G)-invariant and reachability subspaces have
been given in terms of matrix fraction descriptions and
system matrices. This approach has been based on a natu-
ral realization of matrix fraction descriptions introduced
by Fuhrmann [7]. {8]. which follows the module theoretic
realization theory of Kalman [14] (see Kalman. Falb. and
Arbib [15. ch. 10] for a detailed exposition of this approach
and Emre [4] for a simple derivation of the realization of
Fuhrmann [7]. [&] based on the input -output map in-
troduced by Kalman [14]). Later. this line of research has
been continued by Khargonekar and Emre [16]. Fuhrmann
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and Willems [10]. and Fuhrmann {9). considering poly-
nomial representations and by Hautus {11} [12], consider-
ing rational matrix representations.

The purpose of this paper 1s 1o present further results on
the polvnomial characterizations of (F. ¢ y-invariant and
reachability subspaces mainly following Emre and Hautus
[6]. and also establish an explicit connection to Fuhrmann
and Willems [10}.

In Section II. we introduce some notation and pre-
Iiminary results that we will need in the later sections.

In Section I we first establish explicitly the equiva-
lence of the polvnomial characterizations of (F. G)-
invariant subspaces given in Emre and Hautus [6] and
Fuhrmann and Willems [10] for the case treated in the
latter paper. In the latter paper a polvnomial characteriza-
tion s given mainly for the case where the transfer matrix
is described as PO 1 where P oand Q are polvnomial
matrices. Using the results given in [6] for the general case
where the transfer matrix is allowed to be in the form
PQ 'R. we establish that the characterizations given in
{10] are essentially the same as those of Emre and Hautus
[6] specialized to the PQ ! case. Then again for the PQ '
case we establish a correspondence between ( F.G )-in-
variant subspaces and the pairs of matrices (F,. H,). This
then is used to obtain a parametrization of ( F. G )-invariant
subspaces for the PQ ' case. Then, for a given (F. G )-in-
variant subspace Y. we present a polynomial characteriza-
tion of all feedback matrices L such that ¥ is an (F+ GL)-
invariant subspace. Further. also using the relation be-
tween ( FL G )-invariant subspaces and nonsingular factors
of polynomial matrices established in Emre [4]. we show
explicitly for the first time that introducing common fac-
tors in the matrix fraction descriptions of the form PQ !
(thus cancelling some system zeros) is the same as making
an (F.G)-invariant subspace in ker 2/ unobservable by
state feedback. This extends and clarifies the research
started in Wolovich [23] where it is shown that common
factors can be introduced in matrix fraction descriptions of
the form PQ ! by state feedback.

In Section 1V, we consider a matrix fraction description
PQ 'R and the associated system matrix 7. Then we
establish an explicit module isomorphism between the
largest ( F. ¢/ )»-invariant and reachability subspaces in ker H,
where ( F. (. H ) is the natural realization associated with 7
(see Fuhrmann [7]. [8]. Emre [4]. and Section ). and those
of a simpler observable system in terms of the svstem
matrix using the results of Emre and Hautus [6]. This also
provides a constructive procedure to obtain the largest
reachability subspace in ker # for the PQ 'R case. for the
first time.

In Section V. based on the results of Section 1V and
those of Emre and Hautus [6). and introducing a module
structure on the largest (F.G))-invariant and reachability
subspaces in her f1. we establish a theorem on the invariant
factors of a a general polvnomial matrix which generalizes
and unifies both a theorem of Fuhrmann [7] on the in-
vanant factors of a nonsingular polynomial matrix and a
theorem of Moore and Silverman [19] on transmission
polvnomials which was later reproved bv Anderson {1] and
generalized by Molinar [18].
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Finally, in Section VI we present a polynomial char-
acterization of stabilizability subspaces which play an im-
portant role in a number of control problems (see Wonham
[25] and Hautus [11], {12]). Our results on polynomial
characterization of stabilizability subspaces also lead to a
new constructive procedure 1o obtain the largest stabiliza-
bility subspace contained in ker H in terms of the system
matrix.

1I.  NOTATION AND PRELIMINARY RESULTS

In this section we introduce some notation, some pre-
liminary definitions. and results that we will need in the
sequel.

Let K be a field. Let K[ =] denote the ring of polvnomials
in = with coefficients in K and let K(z) denote the field of
formal Laurent series in the indeterminate = ' with coeffi-
cients in K. If S is any given set and p.m are positive
integers, then S7 denotes the set of p-vectors and S7° ™
denotes the set of p X m matrices with entries in S. If x iy
an element of K?(z) then (x). denotes the polynomial
part of X, (x) , denotes the coefficient of = ' in the formal
Laurent series expansion of x in = ', and (x) denotes the
strictly proper part of x, i.e.,

(x) =x—(x)..

For a p X m matrix 4 whose columns belong 10 a K-linear
space V. Sp, A denotes K-linear space spanned by the
columns of V. If ¥is also a K[z]-module then { A) denotes
the K{:]-submodule generated by the columns of A. Fur-
thermore, if f ts a function with 1" as its domain and if «,
denotes the ith column of A, then f( 4) denotes the matrix
whose ith column is f(q,). Finally. if fis a function then
tm / denotes the image of f. and if fis a linear mapping
then ker f denotes the kernel of f.

Let T be a p X m polynomial matrix. Then K, is defined
as

K, ={x: x belongs to K”{:z] and there exists a
strictly proper vector ¢ such that x = Tq}.

In particular. if 7 is a square and nonsingular px p
polynomial matrix, then we have

K, ={x: x belongs to K”[z] and T 'x is a strictly
proper vector}

and the map 7, is defined as
7 Koz = K, xe (T )

Let Z be a px m strictly proper transfer matrix with
matrix fraction description

Z=PQ 'R,

where Q. P and R, are r X r, p X r, and x X m polynomial
matrices, respectively. Let T be the corresponding system
matrix (see Rosenbrock [21])

—
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Throughout the paper our results will be in terms of the
system matrix 7. For convenience we will assume that
Q 'R, is strictly proper without loss of generality, because
if @ 'R, is not strictly proper then we will define

R:=my(R,)
and we will then use the associated system matrix

r=| 2 &
-pP U

where U is the unique p X m polynomial matrix such that
Z=PQ 'R+U.
Define the K-linear maps
Fy: Ky~ Ky: xomy(zx)
Gyp: K" — Ky u—Ru
and

Hy: Ky — K xe(PQ 'x) .

The following lemma associates a natural realization of Z
with the system matrix 7.

Lemma 2.1 (7): Let Z be a p X m strictly proper transfer
matrix. Let P, Q. R. and U be polynomial mutrices such that

Z=PQ 'R+U

where Q 'R is strictly proper. Then £, = (Fy.Gy. Hy) is a
realization of Z with the state space K ,. Furthermore. X, is
reachable if and only if Q and R are left coprime and 2., is
observable if and only if P and Q are right coprime.

=, is called the Q-realization of the transfer matrix Z.
The following lemma is a slightly different restatement of a
result in Emre and Hautus [6].

Lemma 2.2 (6, Theorems 2.5, 2.8). Let (H. F) be a given
observable pair of matrices over the field K. Let Q and S be
a pair of left coprime polyvnomial matrices. Then we have

H(:I-F) '=0Q 's

if and only if

i) the columns of the polynomial matrix S constitute a
hasis for the K-linear spuce K, and

iiy the K-linear map

S K"— KQ: XSy

protides an isomorphism between the pairs (F.H) and
(Fy.Hy) (e F,S=SFand H,S = H).

We will also need the following result in the sequel.

Lemma 2.3 [6, Lemma 3.13); Let A be a polynomial
matrix and let { F.G) be a reachable pair of matrices over K.
Then A(z1 — F) 'G is a polynomial matrix if and only if
A(zlI — F) ' is a polynomial matrix.

The following two lemmas give polynomial characteriza-
tions of ( F,. Gy )-invariant subspaces and reachability sub-
spaces of the Q-realization of Z obtained by Emre and

T i T T T T T e T
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Hautus [6]. The reader s referred to Wonham [25] for
definitions and other important properties of these sub-
spaces. Define the map 7 as
w: K!'In[ _] . I\rl .]. [-"]k".
: : e
Lemma 2.4 (6. sect. 3, 8] Let X, - (F,0 G, H ) be the
Q-realization of the p x m strictly proper transfer matrix
Z=PQ 'R+ L.

Let ¥ be a given r X ¢ polvnomial matrix. Then Sp, ¥ 1y an
(£,. Gy yinvariant subspace if and only if there exist constant
matrices H,, H., and F, such that

QH,+ RH,=%¥(z1- F)).

Furthermore, Spy¥ is contamed in ker H, if and only if

there exists a p X g polvnomial matrix @ such thar
~ PH, + U, = ®(z] - F)).

If the columns of the polvnomial matrix ¥ are K-linearly
independent then there exists a linear map 1.,

Lyt Ky — K"
such that

(Fy+ GyLy)V = VF,
(i.e.. F, is the matrix representation of (I-'(, Gy L,) re-
stricted 10 Sp ¥V with the columns of ¥ taken as a basis for
the K-linear space Sp, .} If T denotes the associated poly-
nomial system matrix of Z then w(K,) s the largest
( FQ. GQ y-invariant subspace in ker HU' Furthermore. if P = 1
then Ky is the largest ( Fy. G, )-invariant subspace in ker H,.

A polynomial characterization of the reachability sub-
spaces is given in the following.

Lemma 2.5 (6. sect. 6]: Let ¥ he a given r =< g poly-
nomial matrix such that the columns of ¥ are K-linearly
independent and Sp, ¥ is an (F,. G, )-incariant subspace.
Let H\. Hy. and F, be as in Lemma 2.4. Then

i) SpyV is a reachability subspace if and only of there
exists a constant marrix G, such that Sp,(¥G ) C Spy R
and the puair (F,.G)) is reachable:

ity if G| is a constant mairix such that

Spy¥Gy = Sp,¥NSp, R

then SpY(G . F\G.--- F} 'G\]is the largest reachability
subspace contained in Sp V.

We now state the main alternative polvnomial char-
acterization of (F,. G, )»invariant subspaces given by
Fuhrmann and Willems [10]. In Section 111 we will prove
the equivalence of the polynomial characterizations of
(Fy. G, )-invariant subspaces given by Lemma 2.4 due to
Emre and Hautus and the following result due to Fuhr-
mann and Willems [10].

Lemma 2.6 [10. Lemma 4.2]: Let £, = (K,. G,. H,) be
the Q-realization of the strictly proper transfer matrix

B e s
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Z: PO N

Ler M be a polvnonual matrix such that Spy M s u subspace
of I\ Then Sp, M 1s an (I (:(,) variant subspace tf and
only II there exist poly mmuu/ matrices Q. Q. and Q'+ such
that

0y SpeM (00 QK
i) Q (R

uny Q@ ' as well as QQ
hrcausal ).
The following lemma is a summiary of some of the results
m bmre |50 Theorems 1. 2],

Lemma 2.7

are causal (e QO ' i

Let R be a p - on polvnomual matrix, Let
be a nonsmgudar v < m polvnonual matrix. Then the follow-
g statements are cquitalent:

0y Q) 5 a right factor of R.

1wy There exist polvnomial marrices Voand S, (S, being
letr coprime with Q) and constunt watrices H, and F, such
that
I

Q,'S, s H{(zl - F)
andd
RH, 1zl F)).

In Section Vowe will obtain a generalization of a theorem
of Moore and Silverman [19]. For the sake of complete-
ness. we now state this theorem,

Theorem 2.8 [19]. Let S (F.G.H) be o canonical
realization of a swricthy proper transter mariy 7. and let W,
be the largest (F.Ghy-mvariant subspace in ker H and ¥, be
the lurgest reachabiliny subspace in ker H. Then the noncon-
stant mcariant factors of the limear map induced by (F - G1.),
where Loy such that (F - GLYW, C ¥y, on ¥y, Y, are the
same as the nonconstant neariant factors of R in a lefr
coprome fuctorization

7 Q'R

of Z which are the same ay the numerator polvnomials in the
Smith McMidlan form of 7.

I, UNIFICATION OF Al TERNATIVE
CHARAC TERIZATIONS AND A PARAMFIRIZATION Of
( F.G)-INVARIANT SUBSPACES

Let Fin K"7" and G in K" be a reachable pair of
matrices. Let B and Q be #n - m and m < m coprime
polvnomial matrices such that

7o (- F) 6w

Let X, (F,. Gy Hy) be the Q-realization of Z. In this
section, first we establish the equivalence of the polvnomial
characterizations of (F,. G, »-invaniant subspaces obtained
by Emre and Hautus 6] and those obtained by Fuhrmann
and Willems {10]. These characterizations have been stated
in Section Has Lemmas 2.4 and 2.6, The characterization

ol (F,. Gy )-invariant subspaces as stated m Lemma 2.6 1
the main characterization obtained by Fuhrmann and Wil-
lems [10). Thev have also considered the case where

7z O 'R,

(with the restriction that @, and R are left coprime).
However. the results in this case are obtained using the
state-spice homomorphism theorem of Fuhrmann [7] relat-
ing the Q-reabizations corresponding o the coprime lac-
torizations @, 'R, and PQ . and using their main result
for the case Z - PQ ' Therefore. we restrict our attention
to thetr main characterization given i Lemma 2.6,

Furthermore, for a given (F.G)-imvariant subspace W,
we give a characterization of all feedback matrices 1. such
that ¥ s (F - GLy-ivariant n terms of  polynomial
matrices. We  establish a4 correspondence between
(F,. Gy »-vaniant subspaces and pairs of constant matrices
(H,. F)).and give a parametrization of these subspaces in
terms of the pairs (H,. F)). Finallv, for a given stricth
proper transfer matrix with the matrix fraction representa-
tion PQ ' and the associated Q-realization (£,.G,,. H, ).
we show for the first ume. explicitly, the relation between
(4. G, )-invariant subspaces in kerf{, and the common
nonsingular right divisors of P and O where Q is feedback
equivalent to Q. We give explicit characterization of these
factors in terms of (. G )-iavariant subspaces in ker 1",
This, in particular. shows explicitly that cancelling com-
mon factors between P and Q and thus removing some of
the svstem zeros corresponds to making ¢ F, G -mvariant
subspaces in ker /i, unobservable by state feedbach. Previ-
ously, partial results on this problem were obtained by
Wolovich 23] where it was shown that a nonsingular right
divisor of P could be cancelled by state feedbhack. Here we
consider all possible nonsingular right factors of P and
show exphicitly the relation of (F,. G, -invariant subspaces
in ker /,, to the right nonsingular factors of P, peniding a
characterization of these factors in terms of these sub-
spaces. These results generahize the rescarch started by
Wolovich [23] also making a connection to the geometric
theory of linear systems,

It s well known (see. ez Hautus and Hevmann |13
Theorems S.100 SA3)) that f 7is any o - 0 constant
matrix, then

(z1 (F GILN 'G W(Q - 1w

Thus, for a feedback matrix L. the polvnomial matris
Q: O+ LW corresponds 1o the pair (F 1 .G For the
proof of the main theorem of this section which establishes
an expliait connection between the different pohvnomaal
characterizations of (F,. G, )»-invanant subspaces. we will
need a madified \Lrsmn of 4 result by Fuhrmann {9
Theorem 4.3]. This result provides a natural A-isomor-
phism between K, and A considered as vector spaces.
Here we give a simpler new proof of a slightly corrected
version of this result where we assume that @' s proper.

(Note that 1f @ is cither row or column proper. this
condition is automatically satisfied.)
Define the map

P S W
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Tyo 1 Kg— Ky xm(QQ 'x),

To see tl).nl the map 7,5 + is well defined. we need to show
that (QQ 'x). belongs to K, foragiven xin I\(, Lety be
the umgue polynomial vector and ¢ be the unique strictly
proper vector such that

00 =yt

Since x belongs to K. 0 'xis striullv proper and since
Q 'is assumcd to be proper, Q@ ¢ is also strictly proper.
Hence. (QQ 'x). belongs to K, and the map T, «is well
defined.

Lemma 3.1: Let Q and Q be m X m nonsingular poly-
nomial matrices such thar Q ' is proper and

0=0Q0+LW
Jor some m x n constant matrix L. Then ly6 1 is a K-vector
space isomorphism.

Proof: It is known (see Fuhrmann (7. Corollary (4.9)))
that the dimension of the K-vector space K, is the same as
the degree of det Q. But the degrees of det Q and det Q are
the same. It follows that dimensions of K, and K are the
same. Furthermore. it is clear that 7,5+ is a K-linear
mapping. Thus. we only need to prove that 7,5 + is one to
one. If v in K is such that

TQ(; t(.\'):()

then by definition (QQ 'x) is a strictly proper vector.
Furthermore. it is clear that

Q0 '=1+G
where G is strictly proper. It then follows that x is strictly
proper. This yields x = 0. &

Remark 32: Lemma 3.1 is stated in Fuhrmann [§]
without the assumption that Q ' is proper. We will now
show by a counterexample that Lemma 3.1 is not neces-
sarily true for arbitrary Q. Let us choose

It can be easily checked that Q ' is not proper. Let us
choose

in K. then

né4xngorq,=“r

JEEE TRANSACHIONS ON AUTOMATIC CONTROL, VOIL. AC-27. NGO 20 APRIL TYR2

But we also have

xH l-*n‘}

Thus. 7,,; :(x) does not belong 10 K, and. hence. the map
I, + s not well defined. This example shows that T, - is
not well defined in general. unless Q ' is proper.

Lemma 3.1 is very useful since it provides a natural
connection between the state-spaces K, and K ; of H'Q
and WQ ', respectively. In the following theorem we
establish an explicit link between the polynomial char-
acterizations of (F,. G, )-invariant subspaces given in 6]
and (10}

Theorem 3.3: Let V be an m < g polvinomial matrix such
that its columns are K-linearly independent. Let () ' be
strictly proper. Then the following statements are equivalent.

a) Spybias an (F, G )-incariant subspace.
b) (6. Theorem (3.1 There exist matrices Hym K™,
Hom K" 9 and Fpoin K such that
10y QH - H. =zl Ry
) There exists an mi < g polvnomial matrix U and there
exist matrices Hom K™ 90 F i K and Lo K77 such
that +f we define

then we have
i) T, 5y = b oand
iy QH, -1zl k)
(i.e.. the omage of the subspace Spy b wnder the map T,
Sp,\t which is Fs-incariant).
d) [10. Theorem 4.2 There exists anm = nr nonsingu-
lar polvnonual matrix Q. and an m - n constant matrix 1.
such that for

Q: Q- IW
) QQ Vs oa polvnomial matrix Qi.e.. Q. is a right
nonsingular factor of (‘.) ) and
W) Spab Tog (00 'K, ).

Proof: The equivalence between a) and b) is estab-
lished in 6] and the equivalence between a) and d)y is
established in [10]. Here we establish the equivalence be-
tween by ¢y and d).

hy<> ) We have

OH,+ H,=V(zl F)).
Multiplyving on the left by H'Q ' we get
WH +WQ 'H,=WQ "W(zl-F). (3.4)
Taking polvnomial parts on both sides of (3.4) we obtain
WH, - (WQ V) (1 F)+(AQ V')
Since (F.G) is a reachable pair and W and Q are right

coprime. it follows from [7. Theorems 4.5 and 4.7] that the
map

X:KQ - K(:I IR Y I)(("'\‘)
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is a K[z)-module isomorphism. Furthermore
x(x)=m.,. (Gx)=(zl - F)((:I —F) 'Gx)
=(z1-F)(WQ 'x)
and since x(x) is a constant vector it follows that
x(x)=(WQ 'x) .

Thus, V,:=(WQ 'V) , is the image of V under the
K{:z}-module isomorphism x and, hence, SpyV, is an
( F.G)-invariant subspace. Since the columns of ¥V are
K-linearly independent, the columns of the constant matrix
V, are K-linearly independent. Further remembering that

Fy(V)=:V—QH,=VF + H,,
b-i) is just a rewriting of the equation
FV, =V F, + GH,.
If we define L by
LV, = H,
then we obtain
(F-GL)V,=VF,

ie.. the feedback matrix L makes SpyV, an (F—-GLY
invariant subspace. At least one such L exists since the
columns of V| are K-linearly independent. With this choice
of L we have

LWH,=L{WQ V) (- F)+H,. (3.5)
Adding (3.5) and b-i) we get
(Q+LW)H = (V+LIWQ V). Wzl F).
If we define
Visb+ L(WQ W), T, (V)

then we get

OH, =V(:z1 - F)).
Since T, © is the inverse of T;, . we abso have

V=T, (V).
¢)»b): We have
QH, =1(zl - F)).

Multiplying both sides by QQ ' on the left and taking
polynomial parts, we get

QH,=(QQ 'V) . (z1 - F)+(Q0 'V) .
Define
Hy=-(QQ 'V) \=L(WQ 'V) ,.
Then we have
QH,+ Hy=V(zl - F,).

This establishes the equivalence between b) and c¢).
¢f »d): Let L be as in ¢). Let Q,.8, be a pair of
relatively prime polynomial matrices such that

H(:I-F) '=0,'s,.

Since the columns of V are K-linearly independent and
Ts, + is an isomorphism, the columns of the matrix V are
also K-linearly independent. Now, by c-ii) the pair (H,, F})
is observable. By Lemma 2.3, S, is a basis matrix for K,
as a K-linear space. Then c-i) and Lemma 2.7 imply that
Q, is a right factor of Q. Finally

V=Tys~ 1(0Q.'S)
which implies
SpV=To5 (00, 'Ky.).

d)->c): Lemma 2.7 and d-i) imply that there exists a
polynomial matrix V and constant matrices H . F, such
that

OQH,=V(:1 - F,)
where
H(:1-F) '=0.'s,

for some polynomial matrix S, left coprime with @, (which
by Lemma 2.3 constitutes a basis matrix for K, as a
K-linear space). It is given that

V=Tys (00, 'S:).
But we have
QQ: 'S, = V.

Hence the proof. a

Remark 3.6. The proof of Theorem 3.3 suggests a pro-
cedure for characterizing the set of all feedback matrices L
which make Sp, V" and Fj-invariant subspace (correspond-
ing to the (F - GL )-invariant subspace Sp, . (WQ 'V) )
such that the matrix representation of Fj restricted to
Sp, b s F) with the columns of V' as a basis for Sp,V. In
partwcular

QH, + H, =V (1 - F))
and
(Q+LW)H =V(:1-F,)
if and only if L is a solution to
L(WQ V) ,=H,.

As shown in the proof of the preceding theorem this choice
of L leads to the equation

F(wQ 'v) ,=(WQ V) \FL+GL(WQ 'V)_,

which makes (WQ 'V) | an (F — GL)-invariant subspace.
Thus we first calculate the full column rank constant
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matrix (WQ 'V') | and then solve for L in the linear
equations over the field K:

LWQ V) ,=H,.

Remark 3.7: Now we will show that there is a corre-
spondence between the pairs (H. F) and (F,.G,, )in-
variant subspaces and we will obtain a parametrization for
{ F,. G, )-invariant subspaces in terms of the pairs (H,. F)).
For this we first show that we can associate an ( F,. G, )in-
variant subspace with a given pair (},. F,). Giver a pair
(H\. F)) we will associate with it a polynomial matrix }’
and a constant matrix H, such that

QH,+ H,=V(z] - F)).

Then by Lemma 2.4 Sp, b’ will be an (F,. G, )-invariant
subspace. To do this, first we express Q as

Q=0:'+Q, 2 '+ 49,
and then define
—H:3:Q/H11"|I+Q/ IHIFII 1+Q()}ll

{which is called the right functional value of QH, at F)).
Then by the generalized Bezout theorem (see Gantmacher
(1958, ch. 4}). (QH, + H,) is divisible on the right by

(2] — F)). Therefore, there exists a polynomial matrix }’

such that
QH,+ H,=V(:I - F)).

In fact, since Ho(zI— F) ' is strictly proper. the poly-
nomial matrix b is given as

V={(QH(1-F) "), .

Conversely. given a polynomial matrix V such that Sp, V" is
an ( F,. G, )-invariant subspace the matrices H, and F, are
given by

F)\V)=m,(zV)=:V - QH,
and
F)(V)=VF,+ H,

where the last equation states the fact that Sp,V is an
( FQ, Gy )-invariant subspace.

However. this correspondence does not completely char-
acterize ( F,. G, )-invariant subspaces. since for a given pair
( H,. F)). the polynomial matrix

V=(QH(z1-F) "),

may not have K-linearly independent columns. Also, two
different pairs (H,. F,) and (fl,.f‘,) may give rise to
corresponding polyriomial matrices V. V such that Sp,} =
SpxV. We shall first characterize those pairs of matrices H,
in K™*4 and F, in K979 that correspond to an m x g
polynomial matrix V having K-linearly independent col-
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umns, for any arbitrary but fixed ¢. It s sufficient to
consider such pairs of matrices (H,. F). since for a given
g-dimensional (K, G, )-invariant subspace ¥. we can find
an m ¥ ¢ polvnomial matnix Fand H,. H,in K™ ¥ and F,
m A4 9 such that

QH, + H, V(- F))
and
Sppb v

Such a V. clearly. has K-hnearly independent columns. Let
us express Foas

R M RS V- IR M

It now follows that

Vo Q, 0 s 0 H,

l"/ 1 Q | Q,’ 0 ”l FI
. ’ . . . . .(3.8)
b & Q: 9, ”|I"|'v !

Furthermore. } has full column rank (over K ) if and onlv
if the left-hand side of (3.8) has full column rank. If (4, ))
and ( £, are the entries of the matrices /| and F. then the
entries of } are polynomial functions of (A, ) and (/)
given by (3.8). Let »(H,. F|) denote an N-tuple with g ~ ¢
minors of the left-hand side matrix of (3.8) as its entries.
Im ).)

q
Thus, the Plicker coordinates of »( H,. £} are polynomial

functions of (/) and (f,). It now follows that }"is full
column rank iff »( H,. £) is not the zero vector. Thus. the
pairs ( H,. F)) that give full column rank }’ correspond to
the complement of an algebraic set. Furthermore. two such
pairs (H,. F) and (H,.F,) give the same (F,. G -in-
variant subspace if and only if there exists a constant
nonsingular ¢ ¥ ¢ matrix a satisfying

(These are called the Pliicker coordinates. Here N =

V= Va.
This can happen if and only if
v(H,.F))=v(H,. F)deta.

Hence. the class of pairs H, is K™ ¢ and F, in K9 4 that
give rise to distinct g-dimensional (F(,.G(,)-invariam sub-
spaces correspond to the complement of an algebraic set
modulo the equivalence * ~ ™

(H,.F))~(H,.F,) itand only if v(H,. F)=v(H,. F))c

where ¢ is some nonzero constant.

This constitutes a complete parametrization of g-dimen-
sional_ (F,.Gy)-invariant subspaces in terms of pairs
(M. F).

Remark 3.9: Let Z: = PQ ' be a p X m strictly proper
transfer matrix. where P and Q are polynomial matrices
and Q ' is proper, and let (F,.G,. H,) be the Q-realiza-
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tion of Z. We will now show explicitly the relation between
(F,. Gy )invariant subspace in kerH,, and common right
nonsingular factors of P and Q where O is feedback
equivalent to Q. We will also show that cancelling the
common right nonsingular factors of P and Q corresponds
to making an (£,. G, )-invariant subspace in ker/{,, un-
observable by state feedback.

By Lemma 2.4 an m X g polynomial matrix V' with
K-linearly independent columns spans an (F,. G, )-in-
variant subspace in ker H, if and only if there exist con-
stant matrices H,, H,. and F, and a polynomial matrix ¥,
such that

OH, + H, = V(:I - F,)
PH,=V (1~ F,).

By Theorem 3.2, there exists an m X m nonsingular poly-
nomial matrix Q feedback equivalent to Q such that

OH,=V(zI - F))
where
Vi=Ts, (V).

Let Q. and S, be left coprime polynomial matrices such
that

H(:I-F) '=0,',.

Then by Lemma 2.7 we see that @, is a common right
divisor of P and Q. Thus, SpiV is an (F,.G, )-invariant
subspace in ker H;; only if @, is a common nght divisor of
P and the subspace T,,; u(QQi 'KQ:) is made unobserva-
ble by state feedback.

For the converse. we assume that the rank [over K(z)] of
P is m. Let Q, be a right factor of P. Then by Lemma 2.7,
there exists a polynomial matrix S, and constant matrices
H, and F, such that

Q,'s,=H(zI-F) "
and
PH =V/(zI-F)

for some polynomial matrix V,. Then, as in Remark 3.7, we
can find a polynomial matrix ¥V for which there exists a
constant matrix H, satisfying

QH,+ H,=V(zI - F,).

Then, by Lemma 24, Sp,V is an (£, G, )-invariant sub-
space in kerH,. Note that we can also find a feedback
equivalent matnx 0 such that Q, is a common right divisor
of (). Thus, we have explicitly shown the relation between
( Fy. Gy )-invarant subspaces in ker H,, and common right
nommgular divisors of P and Q where O is feedback
equivalent to Q. The results given above make contact with
the geometric theory of linear systems and generalize the
work of Wolovich [23].

IV. THE LARGEST (F. G )FINVARIANT AND
REACHABILITY SUBSPACES IN ker M AND THE SYSIEM
MAIRIX

Let Z be a p x m strictly proper transfer matnix with the
associated system matrix

18

where P, Q. R.and Uarepxror=ror-m and p - m
polynomial matrices such that Z - PQ 'R+ U and Q 'R
is strictly proper. Let 2, = (F,.G,,. H,,) be the Q-realiza-
tion of Z associated with the system matrix 7. In this
section we will be concerned only with the Jargest
(Fy,. Gy )-invariant subspace in ker H,. denoted by ¥,,. and
the largest reachability subspace contained n ker /1. de-
noted by VY. In particular, if Q is an (r+ p)>(r+ p)
nonsingular matrix such that Q 'T is a strictly proper
transfer matrix, and £; = ( F;. G H;) is the Q-realization
of Q0 'T. then it will be shown that ¥, and ¥, are
K[:z]-module isomorphic with the largest (F;.G;)-in-
variant subspace in ker A5 (which by Lemma 24 is K))
and the largest reachability subspace in ker H;. respec-
tively. This result will then be utilized in Section V 1o
obtain a generalization of a theorem of Moore-Silverman
on transmission polynomials. (For details see Section V.)
By Lemma 2.1, ( F5. Hj) is an observable pair. Thus. for
any system ( F, G, H), the largest ( F. G )-invariant subspace
in ker 4 and the largest reachability subspace in ker H are
isomorphic to corresponding subspaces of an observable
system. Using these results we also give a new constructive
procedure to obtain the subspace ¥, for the case Z=
PQ 'R+U.

By Lemma 2.4 there exist constant matrices H, =
(H’ H Y and F, such that the columns of the pol\nomul
matrix TH(z/ — F,)" ' constitute a basis for the K-linear
space K. Furthermore, if # denotes the K-linear map

7 Ky~ K, [:] —~ X

then 7(K ) is the largest (F,. G, )-invariant subspace con-
tained in ker H,,. Let us define

& =TH,(:I-F) '

We now define a K[z]}-module structure on K, in the
following way. Let x be an element of K,. Since the
columns of the matrix @ constitute a basis for K. there
exists a unique constant vector g such that

x=0g.
We now define the scalar multiplication by - by the rule
zx:=®Fg=TH(z[-F) 'Fig
= T(:H,(zl -F) 'g)

It is clear that this definition of scalar multiplication by :
gives K, a K[z]-module structure. Now we will establish
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the isomorphism between Ay and the largest (£, G, )-in-
variant subspace in ker H, in the following.
Theorem 4.1: The map

Xy
7Ky - K [‘\_‘]H.\'l

15 o one-to-one K-linear map and image of w is ¥,,.
Proof: Tt is obvious that 7 is K-linear. If = is not
one-to-one there exists a nonzero vector x in K, such that

m{x)= 0.

Since columns of @ constitute a basts for K, there exists a
unigue constant vector g such that

x =g,

Let us partition #, and x in accordance with T as
i.I, AW
. and |}
H, Nl

Then we have

| | o R H, |

and
m(x) x, - QH(zI-F) 'g+RH.(zI- F) '¢ 0.
Multiplving by PO ! on the left we get
PH(z1 - F) 'g+PQ 'RH(:I-F) 'g=0
which can be rewritten as
PI?,(:I - F) 'g - Uﬂz(:l -F) 'g

+ ZH(z1 - F) 'g- 0.
It now follows that

X, = Zl?z(:l -F) g
Since x, is a polvnomial vector and ZH, (=1 - F,) 'gis a
strictly proper vector. we must have
x,=0.
Thus we have
x=0.

Using Lemma 2.4, im#7 = ¥,,.
Remark 4.2: Let us define

V:=x(d)

(i.e.. V is the upper part.of the matrix ® partitioned
according to the partition of T). Then the columns of the
polynomial matrix V" constitute a basis for the K-linear
space ¥, since 7 is one-to-one and im= is ¥,,. Let 7 be
defined as

Ky — ¥y xew(x)
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te, w(x) “m(x). Now, if x) is an element of W, thn
there exists 4 unigue constant vector g such that

X, = by
and if we define
x: = Qg
then x is the unique constant vector in K, such that
Xy =mix).

These considerations allow us 1o define A z)-module struc-
ture on ¥, in the following natural way. Define

s mlox)=a(®F ) Vg

which makes 7, a K{z}module homomorphism. Thus. =, is
a K[z]-module isomorphism between K, and ¥,,.

Remark 4.3 We can obtain a basis matrix for the li
(F,. Gy »-invariant subspace in ker H,, as follows. Let w
an (r + p)<(r + p)unimodular matnx such that

MT[T']
0

where Ty is an {7 (r + m) row-proper polvpomial m
Let ap.a..- - - a, be the row degrees of T,. Define

and
Vo= diag (5L 8 1),

Then it is shown in [6. Corollary (7.6)] that the columns of
the polyvnomial matrix

d:=M '[ | ]
0
constitute a basis for the K-linear space A ,. If we define
Vii=m(®)

then by Lemma 4.1 the columns of the matrix |, constitute
a basis for the K-linear space ¥,,.
In the next theorem we show how the largest reachability
subspace ¥, contained in ker H,, can be obtained from K.
Theorem 4.4: Let G, be a constant matrix such that
columns of ®G | span the K-linear space K ;N\Sp, T. Then we
have

Yy =m(Spa®[G,. FG,.- - F} 'G]).
Proof: Let us first define
t=m( ).
If G, is a constant matrix such that the columns of 1°G,

span the K-linear space ¥,,NSp,R. then we have by
Lemma 2.5

\PR = SPA-(V[G:- FG, .- K I(;l])'
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Thus, if we prove that the columns of VG, span the
K-hnear space ¥,,NSp, R. then

A\’ S/’A“.[("hFl("r""l“l‘l l("1])
’S/)A(vrlq)[(i].l",(i,,---.l"l" l(il])
Sad Spa (G R G F G

So let xy be an arbitrary element of ¥, ,NSp, R, Then
there exists a constant vector o, such that
v, - Rd,
and a umygue constant vector ¢ such that

v, T e

Let us define
,\"
R L I

for some polvnomial vector x.. Since x belongs to A, there
existstrictly proper vectors ¢, and ¢, such that

L

Y Q4 v Ry, - Rd,.

It follows that

Multplving by PQ " we have
Pg,+ PQ 'Rq, - PO 'Rd,
which can be rewritten as
— Py, ~ Uy = Z{q-—d|)+ Ld,.
W have
v, =Uqg, ~ Py,
and consequently
x, =g, —d )+ Ud,.

Since Z is strictly proper and (¢, — d,) is proper. it follows
that

X, = Ud,

SHRA= A

Consequently, x belongs to the K-linear space Sp, T and
also to K. and hence belongs to Sp, TNK ;.. Furthermore.
stnce the columns of @G, span the K-linear space K,;N
Sp, T. there exists a constant vector ¢ such that

v =06,

and we have

and hence

X, =VG,c

(te.. x, belongs to the K-linear space SpVG)).

Converselv. let v, be an arbitrary element of Sp, 16
We will prove that x, also belongs to W, i8Sp, R. Let ¢ be
a constant vector such that

v, Vo
If we let
A} ‘1’(1"('

then v belongs to K, 708p, T and. therefore. there exint
constant vectors | and o such that

v, |d, O R||d.
X ‘A . P
X, d, P Ul d,
It follows that
AN Qc/: * R(/‘ .
Therefore

(/: Q I\l Q 1R(/‘.

Since v, belongs to K, and @ 'R is strictly proper. (0 'y,
Q 'Rd; is also strictly proper. Consequently

d.-=0.
Thus
Xy = Rd = m(x)

and therefore x| belongs to ¥,,NSp, R. This proves that
columns of 1'¢G span the K-linear space ¥, 7 Sp, R. This
completes the proof of the theorem. -

Remark 4.5 Let Q be a {p+r)y~(p-=r) nonungular
polvnomial matrix such that Q 'T is a strictly proper
rational matrix. (It is obvious that such matrices Q exist.)
Let X5t = (F;. G H;) be the Q-reaﬁzalinn associated with
the strictly proper transfer matrix ¢ 'T. By Lemma 2.4,
K, is the largest (£5. G invariant subspace in her ;.
Furthermore. if G, is as in Theorem 4.4, then
Sp ®IG,. F,G .- -.F¢ 'G,]is the largest reachability sub-
space contained in kerH; denoted by ¥, With these
interpretations for K, and ¥, and using Theorems 4.1 and
4.2, we have the following fact:

m K, - ¥y,

is a K[z]-module isomorphism s ™ that

D 7K, )=¥,
and

2) m(¥,) =¥y,
Thus, 7, is a K-linear map that maps the largest ¢ £5. G;)-
invariant subspace in kerH,. and the lurgest reachability
subspace contained therein onto the largest (K. G, )-in-
variant subspace in kerH, and the largest reachability
subspace  contained therein, respectively.  Recall  that

(F;. H) is an observable pair. Thus. the largest (F. ¢ )-in-
vanant subspace in ker H and the largest reachabihity sub-
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space contained in it can be viewed as the corresponding
subspaces of an observable system, namely X ;.

Remark 4.6: 1t follows from the preceding remark that
any constructive procedure for obtaining the largest
reachability subspace contained in ker 4 for the Q-realiza-
tion of the strictly proper transfer matrix Q 'T can be
used to obtain the largest reachability subspace contained
ker H,, for the Q-realization of the transfer matrix Z. A
constructive procedure to obtain the largest reachability
subspace contained in ker H;; for Q-realization of Q 'T is
given (6, Theorem 7.7). Using this procedure, we can obtain
a polynomial matrix ¢, whose columns constitute a basis
for the largest reachability subspace contained in ker £/;;.
Then by Theorem 4.4 and the preceding remark. it follows
that the columns of the polynomial matrix 7, (®,) con-
stitute a basis for the K-vector space ¥,. Thus, we have a
constructive procedure to obtain the largest reachability
subspace ¥, for the Q-realization of Z.

V. A MODULE THEORETIC APPROACH 10O
TRANSMISSION POLYNOMIALS

Let T be a pXv polynomial matrix. Let H,. F, be
constant matrices such that the columns of ®: = TH (2] -
F,) ' constitute a basis for the K-vector space K. As in
Section 1V, we define a K[:z}-module structure on K. For
a given x in K. let g be the unique constant vector such
that x =TH\(:] — F)) 'e. Then we define the scatar multi-
plication by = as

sxo=T(:H(:I-F) 'g) =TH(:I-F) 'Fg.

In case T is square and nonsingular. it is shown by Fuhr-
mann [7] that K, is K([z]-module isomorphic to
K*[z]/TK"’[z] and. hence, the nonconstant invariant fac-
tors of T are the same as the invariant factors of the
K[z}-module K. In general. T may not be square and
nonsingular. (For example, the system matrix is not neces-
sarily square and nonsingular.) In this section we gener-
alize this result using the generalization of K, given in [6]
(also see Section II), and prove that the nonconstant in-
variant factors of the quotient module K, /(K ,NSp,T)
are the same as the nonconstant invariant factors of the
polynomial matrix T. This fundamental result also leads to
the following generalization of a theorem of Moore and
Silverman [19] (see Lemma 2.8 for the statement of this
theorem) on transmission polynomials.

Let T be the (r + p)X(r + m) system matrix associated
with the matrix fraction description Z=PQ 'R+ U. and
tet L, K,— K™ be a K-linear map such that (F,+
G, L)Yy C Wy, where Wy, denotes the largest (F,. G, )-in-
variant subspace in ker H,,. Then the nonconstant invariant
factors of the linear map induced by (F,+G,L,) on
V¥,,/ ¥, are the same as the nonconstant invariant factors
of the polynomial system matrix 7. (See Theorem 5.5.)

For the case where Q = (1 - F). R =G.and P = I, this
theorem is also proved by Molinari [18] and by Anderson
[1] for a canonical (F.G. H). Our results, based on the
natural K{:z]-module structure on ¥, and ¥, unify and
generalize the results in [7] and {19].
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We also specialize our results to the left and right
polynomial fractional representations which leads to sim-
ple characterizations of transmission polynomials in terms
of numerator polynomial matrices. Finally, we derive a
simple result which will be used in the next section to
obtain polynomial characterizations of stabilizability sub-
spaces.

To prove our main results of this section, first we
establish the following lemmas.

Let the row rank [over the field K(2)] of the polynomial
matrix 7 be y < p. Then there exists a unimodular matrix
M such that

=[]

where T is a full row rank [over the field K(z)] y < »
polynomial matrix. Consider the map f: K, -
R*[z] MTK"{z]): x»Mx+ MTK*[z]. Let L, and ¢, be
constant matrices such that

SpoTL, = Sp®G, = K,NSp, T.

We will first prove that fis a K[z]-module homomorphism
with (TL,) as its kernel.
Lemma S.1: fis a K|z)-module homomorphism.
Proof: For x,.x, in K, we have

FUx, = xX3) = My, + My + MTKY[2] = f(x )+ flx,).
Let g be the unigue constant vector such that
X, =bg=TH(:zI- F)) 'g.

Then we have

f(zox)) = (TH(:1 = F) 'Fig)

= f( TH =(:I—F)) g— TH,g).

It now follows that
flzox)) =zMx - MTH,g+ MTK"[z] = z- f(x,).

Thus. fis a K [z]-module homomorphism. O
The kernel of the homomorphism f is obtained in the
following.
Lemma 5.2: The kernel of f is the K | z }-submodule {TL ).
Proof: Tt is clear that

ATL,) = MTL,+ MTK'[:] = 0.

Furthermore. since fis a K[z]-module homomorphism. it
follows that f({TL,>) = 0 and. hence. (TL > C ker [.

Conversely, let x in K, be such that f(x) = 0. Then there
exists a polynomial vector b and a strictly proper vector q.
such that x =Th=Tgq. Let b be represented as b, + b,z
+ +-+ 4 b,z where b, are in K" and b, is nonzero. Further-
more, since x belongs to K ;. there exists a unique constant
vector g such that x = ®g. Now we have

!
r( s h,:') STH(:T-F) '
;o
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Multiplying by = / we get

Th,=TH(:1-F) 'z ‘g~

/

Th,:' !

)]

Consequently, 7b, belongs to K, as well as to Sp, T and
hence to Sp, T1.,. Furthermore, there exists a unigue con-
stant vector ¢ such that

I
.

T, = ®c=TH,(zI - F))

Comparing coefficients in the two formal power scries
expansions for Th, we get

Th, = ~TH\F| / 'c. 0= j<l-1
TH(:[~ F) ‘¢=TH(:I~F) 'Fle.

It now follows that

I
x=Th=Th:'+ ¥ Tbh:'

;0

=TH(zI-F)) 'Fle=:"Th,.

T VTR TR

Consequently. since Th, belongs 10 Sp,TL . x belongs o
(TLy). Thus. f(x)=0 implics x belongs to {(TL ). This
proves that

‘ ker f=(TL ) =(K,NSp, T). g

i Finally, the image of f is obtained in the following.
Lemma 5.3: Image of the map f is given by

im = {[8]+ MTK"[:]: ain K*[.—]}.

Proof: For any x in K. there exists a strictly proper
vector ¢ such that x = Tq. Consequently, we have

f(x)=Mx+ MTK"[:]

:MTq+MTK“[:]:[Eq

+ MTK"|z).

Since Tyq is a polvnomial vector in K[z]. it follows that
ftx) belongs to

“8] + MTK’[:]): ain K’[:]].
Conversely. since T is full row rank. there exists a
rational matrix S such that 78 = 7. Now let a be in K 7[-].
Then we have

MTSa:[fg“] [g]

Let [ be the unique polynomial vector and ¢ be the unique
strictly proper vector such that Sa = { + q. It follows that

Tq=TSa-Tl= M ‘[8]« TI.

Therefore, Ty is polynomiat and. hence, belongs o K.
Furthermore

f(Tq) = MTq + MTK"([:] = [8] + MTK[:].

A
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We have proved that

P
.

im /= {[g]+ MTK*[:): ain K’[:]}.

The following theorem is an immediate conseguence of
the preceding lemmas, and it relates the K[:z)-module
structures on K, and the natural module structure on
K'[z)/TK"(z]

Theorem 5.4: The quotient module K,/ (K, OSp, T)
is K[ z}-module isomorphic to K[2)/TK*[z). Furthermore.
the nonconstant invariant  factors of the K\|:z}module
K, /{K NSp,T) are the sume as the nonconstant invariant
Juctors of the polynomial matrix T.

Proof: Let 7, be the projection map

7y K*[2)/MTK 2]~ K*[z]/TK*[:]:

|

It is clear the 7, is a well-defined K{z]-module homomor-
phism. Using the results of Lemmas 5.1, 5.2, and 5.3, it
follows that the map =, f is an onto K{z]-module homo-
morphism with kernel (K, NSp,T). Hence, by the funda-
mental homomorphism theorem (see Lang [17. ch. 3]). it
follows that K, /(K NSpyT> and K[z]/TK*[z] are
K|:z]-module isomorphic. Consequently, the nonconstant
invariant factors of K, /(K,;NSp, T) are the same as the
nonconstant invariant factors of T~ which are the same as
the nonconstant invariant factors of T since

|

and M is unimodular. This completes the proof of the
theorem. =

Theorem 5.4 is a generalization of a result by Fuhrmann
(71 which states that if T is square and nonsingular, then
K, and K"[z]). TK"[z] are K[z]-module isomorphic. We
will now apply the results of Theorem 5.4 to obtain a
generalization of the theorem of Moore and Silverman {19).
In what follows. (F,.G,. H,) represents the Q-realization
of Z=PQ 'R+1U.

Theorem 5.5: Let Yy, and Y, respectively. denote the
largest (F,. G, )-incariant and the largest reachability sub-
space in ker H,. Let Ly: K, — K™ be a K-linear map such
that

a

h] + MTK"[]wsa + TK*[ ).

T

MT =
0

( FQ + GQL() )\]I" c ‘Pu-

Then the nonconstant invariant faciors of the linear map
induced by (F, +GyL,) on Yy /Yy are the same as the
nonconstant incariant factors of the polynomial svstem ma-
trix T.

Proof: As noted in Lemma 2.4, there exist constant
matrices H, and F, such that the columns of the polv-
nomial matrix

Q:=TH(zl-F) '

constitute a basis for the K-linear space K, Furthermore,
by Theorems 4.1 and 4.4, it follows that the map
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m: Ky =¥, [Z]Ha
ts a2 K[:z]-module isomorphism such that
7K, NSp,TH) = V¥yg.

By Theorem 5.4, the nonconstant invariant factors of
K, /{KNSp,T) are the same as the nonconstant in-
variant factors of the polynomial system matrix 7. Also,
the module structure on ¥,, and ¥, corresponds to the
matrix F|. Hence, by Lemma 2.4 the module structure on
¥,,/ ¥ corresponds to the action of the linear map in-
duced by (F; +GyL,). and since K; /(K NSp,T) and
¥,/ ¥y are K[z]-module isomorphic, it follows that the
nonconstant invariant factors of T are the same as the
nonconstant invariant factors of the linear map induced by
(Fo+GyLy)on ¥, /¥, ]

The next result is a simple corollary of the preceding
theorem.

Corollary 5.6: Let Z be u p X m strictly proper trunsfer
matrix with right (respectively, left) matrix fraction repre-
sentation Z=PQ " (respectively, Z=Q 'R). Let 2, =
(Fy.Gy. Hy) be the Q-realization of Z. Let ¥y and ¥y,
respectively, represent the largest (F,.Gy)-invariant sub-
space and the largest reachability subspace contained in
kerHy,. Let L,: K, — K™ be a K-linear map such that ¥, is
( FQ + GQ LQ )-incariant. Then the nonconstant incariant fac-
tors of the linear map induced by (Fy+GoLy) on ¥y, /¥y
are the same as the nonconstant incariant factors of P
(respectively, R).

Proof: By Theorem 5.5, the nonconstant invariant fac-
tors of the linear map induced by (F, + GyL,) on ¥,, /¥,
are the same as the nonconstant invariant factors of the
associated polynomial system matrix. If Z=PQ ' then
the system matrix is given by

r=| @ ’].
-P 0
If we define
o
M.—[_Q 1]
then M is unimodular. Now we have
| 0 1
TM—[—P 0]

and. hence, the nonconstant invariant factors of T are the
same as those of P. This completes the proof for the case
Z=PQ ‘. Proof for the left matrix fraction description
Z=Q 'Ris similar. O

We will now establish a result that will be useful in
obtaining a characterization of the largest stabilizability
subspace contained in ker H,. (See Section VI, Theorem
6.1.)

Corollary 5.7: Let R be a p X v polvnomial matrix and let
the dimension of the K-linear space Ky be 1. If H,. F, are
constant matrices such that the columns of RH\(:1 - F,) !
constitute a basis for the K-linear space K g. then the product

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-27, NO. 2. APRI1 1982

of invariant factors of R divides the characteristic polynomial
of F,. Furthermore, if a is a given monic polynomial of
degree m. which is divisible by the product of the invariant
fuctors of R, then there exists a pair (H,, F|) such that the
columns of RH(zI — F\) ' constitute a basis for K , and the
characteristic polvnomial of F is a.

Proof: Let x denote the product of invariant factors of
R. Let us define ®: = RH\(z/ — F|) '. As in Remark 4.5,
let @ be a p X u nonsingular polynomial matrix such that
Q 'R is strictly proper. Let (Fy.Gy. Hy) be the Q-reali-
zation of Q" 'R. Then by Lemma 2.4 it follows that K, is
the largest ( F,, G, )-invariant subspace in ker H,. Further-
more, there exists a K-linear map L,,: K, — K" such that
Kg is (Fy+G,L,)-invariant. and F, is the matrix repre-
sentation of (F, + G,L,,) restricted to K with the col-
umns of ¢ as a basis for K. Let ¥, represent the largest
reachability subspace contained in ker H,,. By Corollary
5.6. it follows that the nonconstant invariam factors of R
are the same as the nonconstant invariant factors of the
linear map induced by (F, +~ G,L,) on K, /¥,. Hence. x
divides the characteristic polynomial of (F, +~G,L,,) re-
stricted to K, which is the same as the characteristic
polynomial of F,.

Let B be defined by B: =a,/x. It ncw follows from
Wonham {25. Corollary 5.2] that there exists a K-linear
map L,: K, — K" such that Ky is (£, = G, L, )-invanant.
the characteristic polynomial of (£, + G, L) restricted to
Wy is B. and the characteristic polynomial of (F, + G, L)
restricted to Ky is a. By Lemma 2.4. there exist constant
matrices H, and F, such that the columns of RH (-] —
F)) ' constitute a basis for K; and the characteristic

polynomial of F| is a. This completes the proof. -

VI. STABILIZABILITY SUBSPACES

Throughout this section we assume that the ficld K is the
field of real numbers denoted by R. In what follows a
general type of stability is considered as in Wonham [25]
and Hautus [11]. [12]: we are given a subset € of the field
of complex numbers C. satisfving the condition that
C MR is nonempty and C is svmmetric about the real
axis. A polynomial with real coefficients is said to be siable
iff all of its roots are in € .

Let £, = (F,.G,. H,) be the Q-realization (see Section
I1) associated with the strictly proper p X m transfer matrix

Z=PQ 'R+L.

A subspace M of R, is said to be a stabilizability subspace
(see Hautus {11} [12]) if and onlyv if there exists a linear
map

Ly R,~R"

such that M is (Fo+Gyly y-invariant and the characteris-
tic polynomial of ( F,+ G, Lo) restricted to M is stable. It
has been shown in Wonham [25] and Hautus [11]. [12] that
stabilizability subspaces are very useful in studying stabil-
ity properties associated with system svnthesis problems.
In this section we establish a characterization of and give a
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constructive procedure to obtain the largest stabilizability
subspace of £, contained in ker H,,.
The following theorem is the main result of this section.
Theorem 6.1: Let T be the polvnomial system matrix of
the strictly proper transfer matrix

Z=PQ R+U

where Q 'R is strictly proper. Let €,.¢>. - -.€ , he the in-
variant factors of the polynomial matrix T. Let € and €, be
such that

—_ t —
€,=¢€'¢, . i=12,---.q

where €, is the unstable factor of €, and ¢, is the stable fuctor
ofe,.Let T  and T be(p+r)X(p+ryand(p+r)Xir
+ mt) polvnomial matrices such that

T=T'T".
T’ is nonsingular with invariants factors € .€; . -,
€, . l.- -~ 1. and the invariant factors of T are €, ., .- -.
€,.0.---.0. Then #(T" Ry ) is the largest stabilizability
subspace contained in ker H,.

Proof: Tt is clear that a stabilizability subspace is
necessarily an (FQ.GQ )-invariant subspace. We shall first
prove that =(T" R, ) is a stabilizability subspace con-
tained in ker H,,.

It follows by the definition of T that the invariant
factors * T are stable. Now by Corollary 5.7 there exists
an observable pair of matrices (H,, F|) such that the
columns of the polyncmial matrix

® =T H(:I-F) "'
constitute a basis for the R-linear space R, and the
characteristic polynomial of F| is stable. Let us define

|

¥ :=T'® =TH(z[-F)

Then we have
7(Spg¥ )=#(T R, ).

By Lemma 2.4 it follows that #(T" R, ) is an (FQ.GQ )-in-
variant subspace in ker H, and there exists an R-linear
map

Lo Ry~ R"

such that m(T R, ) is (FQ+GQLQ)-invariant and the
matrix representation of (FQ + G, LQ) restricted to
m(T R, ) is F, Finally, since the characteristic poly-
nomial of F, is stable, it follows that #(T'R, ) is a
stabilizability subspace contained in ker H,,.

We will now prove that any stabilizability subspace
contained in ker H, is contained in #(T" R, ). Let V" be a
polynomial matrix whose columns constitute a basis for a
stahilizability subspace contained in ker H,. Now. by the
definition of stabilizability subspaces it follows that there
exists an R-linear map

Ly:R,~R"
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such that SppV is (F,+G,L,)invariant and the char-
acteristic polynomial of (F, + G, L)) restricted to SpglV is
stable. If we choose the columns of V' as a basis for Spgeb.
then there exist constant matrices M and F such that

#(TH(zI - F) )=V

and the characteristic polynomial of F is stable. Let us
define ¥ as

\I’:ZTH(zI—I:") L
It now follows that
(T*) "¥=T"H(z1 - F) "

Now the denominator polynomials of the rational matrix
(T') '¥ are unstable, whereas the denominator poly-
nomials of the rational matrix T~ H(zI — F) ! are stable.
Hence, T H(zI1— F) ' must be a polynomial matrix. Thus
we have

Y=TH(:I-F) '=T'T H(zI- F) 'CT'R,
and consequently
Spem(¥)Ca(T" R, ).

This completes the proof of the theorem. a

Theorem 6.1 also provides a constructive procedure 10
obtain the largest stabilizability subspace contained in
ker H,. The procedure can be outlined as follows.

1) Using the invariant factor algorithm for polynomial
matrices (see, for example, Lang [17. ch. 15]). find unimod-
ular matrices M and N such that MTN is in Smith form
with invariant factors €,.- - - .¢,,.

2) Define T" and T as follows:

T :=M 'diag(e, .e5 .- e, 1o+ -.1)

and
€ 0 0
€-
T := . NV
0O .- €, 0
SRS 0 - 0]

3) As described in Remark 4.3, construct a polvnomial
matrix ¢ such that the columns of @ constitute a basis for
the R-lincar space R, .

4) Then the columns of the polynomial matrix (T ¢)
constitute a basis for the largest stabilizability subspace
contained in ker H,,.

Thus, Theorem 6.1 provides a characterization of and a
constructive procedure to obtain the largest stabilizability
subspace contained in ker H,, in terms of the system matrix
T.
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